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Abstract

One of the most influential results in network analysis
is that many natural networks exhibit a power-law
or log-normal degree distribution. This has inspired
numerous generative models that match this property.
However, more recent work has shown that while these
generative models do have the right degree distribution,
they are not good models for real life networks due
to their differences on other important metrics like
conductance. We believe this is, in part, because many
of these real-world networks have very different joint
degree distributions, i.e. the probability that a randomly
selected edge will be between nodes of degree k and l.
Assortativity is a sufficient statistic of the joint degree
distribution, and it has been previously noted that
social networks tend to be assortative, while biological
and technological networks tend to be disassortative.

We suggest that the joint degree distribution of
graphs is an interesting avenue of study for further re-
search into network structure. We provide a simple
greedy algorithm for constructing simple graphs from
a given joint degree distribution, and a Monte Carlo
Markov Chain method for sampling them. We also show
that the state space of simple graphs with a fixed degree
distribution is connected via endpoint switches. We em-
pirically evaluate the mixing time of this Markov Chain
by using experiments based on the autocorrelation of
each edge.

∗Supported by a National Defense Science and Engineering

Graduate Fellowship. Work performed while at Sandia National

Laboratories, Livermore CA.
†This work is supported by the DOE ASCR Applied Mathe-

matics Program.
‡Sandia National Laboratories is a multi-program laboratory

operated by Sandia Corporation, a wholly owned subsidiary

of Lockheed Martin Corporation, for the U.S. Department of

Energys National Nuclear Security Administration under contract
DE-AC04-94AL85000.

1 Introduction

Graphs are widely recognized as the standard modeling
language for many complex systems, including physi-
cal infrastructure (e.g., Internet, electric power, water,
and gas networks), scientific processes (e.g., chemical ki-
netics, protein interactions, and regulatory networks in
biology starting at the gene levels, all the way up to eco-
logical systems), and relational networks (e.g., citation
networks, hyperlinks on the web, and social networks).
The broader adoption of the graph models over the last
decade, along with the growing importance of associated
applications, calls for descriptive and generative models
for real networks. What is common among these net-
works? How do they differ statistically? Can we quan-
tify the differences among these networks? Answering
these questions requires understanding the topological
properties of these graphs, which have lead to numerous
studies on topological properties of many “real-world”
networks from the Internet to social, biological and tech-
nological networks [6].

Perhaps the most prominent result coming out of
these studies is the existence of power-law or log-normal
distributions over many quantities and in particular the
degree distribution: the number of nodes of degree k
is proportional to k−α. The ubiquity of this distribu-
tion has been a motivator for many different generative
models, like preferential attachment, the copying model,
the Barabasi hierarchical model, forest-fire model, the
Kronecker graph model and geometric preferential at-
tachment [7, 16, 18, 29, 17]. Many of these models also
match other observed features, such as small diameter
or densification [14]. However, recent studies comparing
the generative models with real networks on metrics like
conductance show that the models do not match other
important features of the networks [19].

The degree distribution alone does not define a
graph. McKay’s estimate shows that there may be
exponentially many graphs with the same degree dis-
tribution. However, models based on degree distribu-
tion are commonly used to compute statistically signif-



icant structures in a graph. For example, the modular-
ity metric is a standard metric to find communities in
graphs [24, 23]. This metric defines a null hypothesis
for the structure of a graph based on its degree dis-
tribution, namely that probability of an edge between
vertex vi and vj is proportional to didj , where di and
dj represent the degrees of vertices vi and vj . The mod-
ularity of a group of vertices is defined by how much
their structure deviates from the null hypothesis, and
a higher modularity signifies a better community. The
key point here is that the null hypothesis is solely based
on its degree distribution and therefore might be incor-
rect. As a result, better descriptive models are critically
important.

One way to enhance the results based on degree dis-
tribution is to use a more restrictive feature such as the
joint degree distribution. Intuitively, if degree distribu-
tion of a graph describes the probability that a vertex
selected uniformly at random will be of degree k then its
joint degree distribution describes the probability that a
randomly selected edge will be between nodes of degree
k and l. Note that while the joint degree distribution
uniquely defines the degree distribution of a graph up
to isolated nodes, graphs with the same degree distribu-
tion may have very different joint degree distributions.
For example, the assortativity of a network measures
whether nodes prefer to attach to other similar or dis-
similar nodes. When similarity is defined in terms of a
node’s degree, it is a sufficient statistic of the joint de-
gree distribution and measures how different the joint
degree distribution is from one where all of the edges
are between nodes of the same degree. Studies of the
assortativity of networks show that social networks tend
to be assortative, while biological and technological net-
works like the internet tend to be dissortative [26, 25].

Before attempting to use the joint degree distribu-
tion as a metric for designing generative models, it is
important to know how tractable it is to work with.
The primary questions investigated by this paper are:
Given a joint degree distribution and an integer n, is it
possible to construct a graph of size n with that joint
degree distribution? Is it possible to construct or gen-
erate a uniformly random graph with that same joint
degree distribution? We address both of these prob-
lems in this paper both from a theoretical and from an
empirical perspective.

Contributions. We make several contributions to
this problem, both theoretically and experimentally.
First, we discuss the necessary and sufficient conditions
for a given joint degree vector to be graphical. We
prove that these conditions are sufficient by providing a
new constructive algorithm. Next, we introduce a new
configuration model for the joint degree matrix problem

which is a natural extension of the configuration model
for the degree sequence problem. Finally, using this
configuration model, we develop Markov Chains for
sampling both pseudographs and simple graphs with
a fixed joint degree matrix. We prove the correctness
of both chains and mixing time for the pseudograph
chain by using previous work. The mixing time of the
simple graph chain is experimentally evaluated using
autocorrelation.

In practice, Monte Carlo Markov Chains are a very
popular method for sampling from difficult distribu-
tions. However, it is often very difficult to theoretically
evaluate the mixing time of the chain, and many prac-
titioners simply stop the chain after 5,000, 10,000 or
20,000 iterations without much justification. Our ex-
perimental design with autocorrelation provides a set of
statistics that can be used as a justification for choosing
a stopping point.

Related work. The related work can be roughly
divided into two categories: constructing and sampling
graphs with a fixed degree distribution using sequen-
tial importance sampling or Monte Carlo Markov Chain
methods, and experimental work on heuristics for gen-
erating random graphs with a fixed joint degree distri-
bution.

The methods for constructing graphs with a given
degree distribution are primarily either reductions to
perfect matchings or sequential sampling methods.
There are two popular perfect matching methods. The
first is the configuration model [1]: k mini-vertices are
created for each degree k vertex, and all the mini-
vertices are connected. Given any perfect matching in
the configuration the edges in the graph correspond to
the connected mini-vertices. This allows multiple edges
and self-loops, which are often undesirable. The second
approach, the gadget configuration model, prevents this
problem by creating a gadget for each vertex. If vi has
degree di, then it is replaced with a complete bipartite
graph (Ui, Vi) with |Ui| = n − 1 − di and |Vi| = n − 1.
Exactly one node in each Vi is connected to each other
Vj , representing edge (i, j) [12]. Any perfect matching
in this model corresponds exactly to a simple graph.
These models are pictured in Figures 1 and 2 respec-
tively in the Appendix. We use a natural extension of
the first configuration model to the joint degree distri-
bution problem.

There are also sequential sampling methods that
will construct a graph with a given degree distribution.
Some of these are based on the necessary and sufficient
Erdős-Gallai conditions for a degree sequence to be
graphical [4], while others follow the method of Steger
and Wormald [3, 32, 30, 10, 13]. These combine the
construction and sampling parts of the problem and can



Figure 1: On the left, we see an example of the
configuration model of the graph on the right. Each
vertex is split into a number of minivertices equal to it’s
degree, and then all minivertices are connected. Not all
edges are shown for clarity.
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n− 1− d2

Figure 2: The gadget configuration model. A gadget
is created for each vertex and there are 4 shown above.
One half of the gadget is n − 1 vertices, and the other
half is n − 1 − di, where di is the degree. Then each
gadget is connected once to each other gadget. A perfect
matching in this graph corresponds to a graph with the
correct degree sequence.

be quite fast. The current best work can sample graphs
where dmax = O(m1/4−τ ) in O(mdmax) time [3].

Another approach for sampling graphs with a given
degree distribution is to use a Monte Carlo Markov
Chain method. There is significant work on sampling
perfect matchings [11, 5]. There has also been work
specifically targeted at the degree distribution problem.
Kannan, Tetali and Vempala [12] analyze the mixing
time of a Markov Chain that mixes on the configuration
model, and another for the gadget configuration model.
Gkantsidis, Mihail and Zegura [9] use a Markov Chain
on the configuration model, but reject any transition
that creates a self-loop, multiple edge or disconnects the
graph. Both of these chains use the work of Taylor [33]
to argue that the state space is connected.

Amanatidis, Green and Mihail study the problem of
when a joint degree matrix has graphical representation
and when a connected representation exists [2]. They
give necessary and sufficient conditions for both of these
problems, and constructive algorithms. In Section 2,
we give a simpler constructive algorithm for creating

a graphical representation that is based on solving
the degree sequence problem instead of alternating
structures.

Another vein of related work is that of Mahadevan
et al. who introduce the concept of dK-series [22, 21]. In
this model, d refers to the dimension of the distribution
and 2K is the joint degree distribution. They propose
a heuristic for generating random 2K-graphs for a fixed
2K distribution via edge rewirings. However, their
method can get stuck if there is only 1 node with any
degree k and the state space is not connected. We
provide a theoretically sound method of doing this.

Finally, Newman also studies the problem of fix-
ing an assortativity value, finding a joint remaining de-
gree distribution with that value, and then sampling
a random graph with that distribution using Markov
Chains [26, 25]. His Markov Chain starts at any graph
with the correct degree distribution and converges to
a pseudograph with the correct joint remaining degree
distribution. By contrast, our work provides a theoret-
ically sound way of constructing a simple graph with
a given joint degree distribution first, and our Markov
Chain only has simple graphs with the same joint degree
distribution as its state space.

Notation and Definitions Formally, a degree
distribution of a graph is the probability that a node
chosen at random will be of degree k. Similarly, the joint
degree distribution is the probability that a randomly
selected edge will have endpoints of degree k and l. In
this paper, we are concerned with constructing graphs
that exactly match these distributions, so rather than
probabilities, we will use a counting definition below and
call it the joint degree matrix. In particular, we will be
concerned with generating simple graphs that do not
contain multiple edges or self-loops.

Definition 1. The degree vector (DV) d(G) of a graph
G is a vector where d(G)k is the number of nodes of
degree k in G.

A generic degree vector will be denoted by D.

Definition 2. The joint degree matrix (JDM) J (G)
of a graph G is a matrix where J (G)k,l is exactly the
number of edges between nodes of degree k and degree l
in G.

A generic joint degree matrix will be denoted by
J . Given a joint degree matrix, J , we can recover the
number of edges in the graph as m =

∑∞
k=1

∑∞
l=k Jk,l.

We can also recover the degree vector as Dk = 1
k (Jk,k+∑∞

l=1 Jk,l). The term Jk,k is added twice because kDk
is the number of endpoints of degree k and the edges in
Jk,k contribute two endpoints.



The number of nodes, n is then
∑∞
k=1Dk. This

count does not include any degree 0 vertices, as these
have no edges in the joint degree matrix. Given n
and m, we can easily get the degree distribution and
joint degree distribution. They are P (k) = 1

nDk while
P (k, l) = 1

mJk,l. Note that P (k) is not quite the
marginal of P (k, l) although it is closely related.

The Joint Degree Matrix Configuration
Model We propose a new configuration model for the
joint degree distribution problem. Given J and its cor-
responding D we create k mini-vertices for every vertex
of degree k. In addition, for every edge with endpoints
of degree k and l we create two mini-endpoints, one
of class k and one of class l. We connect all k degree
mini-vertices to the class k mini-endpoints. This forms
a complete bipartite graph for each degree, and each
of these forms a disconnected component. We will call
each of these components the “k-neighborhood”. No-
tice that there are kDk mini-vertices of degree k, and
kDk = Jk,k +

∑
l Jk,l corresponding mini-endpoints in

each k-neighborhood. This is pictured in Figure 3 in
the Appendix.

Take any perfect matching in this graph. If we
merge each pair of mini-endpoints that correspond to
the same edge, we will have some pseudograph that
has exactly the desired joint degree matrix. This
observation forms the basis of our sampling method.

degree k minivertices

class k endpoints

class l endpoints

degree l minivertices

Figure 3: The joint degree matrix configuration model.
This shows just two degree neighborhoods of the joint
degree matrix configuration model. Each vertex of de-
gree k is split into k minivertices which are represented
by the circles. These then form a complete bipartite
component when they are connected with the class k
endpoints, the squares. Each degree neighborhood is
completely disconnected from all others.

2 Constructing Graphs with a Given Joint
Degree Matrix

The Erdős-Gallai condition is a necessary and sufficient
condition for a degree sequence to be realizable as a
simple graph.

Theorem 2.1. Erdős-Gallai A degree sequence d =
{d1, d2, · · · dn} sorted in non-increasing order is graphi-
cal if and only if for every k ≤ n,

∑k
i=1 di ≤ k(k− 1) +

∑n
i=k+1 min(di, k).

The necessity of this condition comes from noting
that in a set of vertices of size k, there can be at most(
k
2

)
internal edges, and for each vertex v not in the sub-

set, there can be at most min{d(v), k} edges entering.
The condition considers each subset of decreasing degree
vertices and looks at the degree requirements of those
nodes. If the requirement is more than the available
edges, the sequence can not be graphical. The suffi-
ciency is shown via the constructive Havel-Hakimi algo-
rithm.

The existence of the Erdős-Gallai condition inspires
us to ask whether similar necessary and sufficient condi-
tions exist for a joint degree matrix to be graphical. The
following necessary and sufficient conditions are due to
Amanatidis et al. [2].

Theorem 2.2. Let J be given and D be the associated
degree distribution. J can be realized as a simple graph
if and only if (1) Dk is integer-valued for all k and
(2) ∀k, l, if k 6= l then Jk,l ≤ DkDl. Otherwise, ∀k
Jk,k ≤

(Dk

2

)
.

The necessity of these conditions is clear. The first
condition requires that there are an integer number of
nodes of each degree value. The next two are that
the number of edges between nodes of degree k and
l (or k and k) are not more than the total possible
number of k to l edges in a simple graph defined by the
marginal degree sequences. Amanatidis et al. show the
sufficiency through a constructive algorithm. We will
now introduce a new algorithm that runs in O(mdmax)
time.

The algorithm proceeds by building a nearly regular
graph for each class of edges, Jk,l. Assume that
k 6= l for simplicity. Each of the Dk nodes of degree
k receives bJk,l/Dkc edges, while Jk,l mod Dk each
have an extra edge. Similarly, the l degree nodes have
bJk,l/Dlc edges, with Jk,l mod Dl having 1 extra. We
can then construct a simple bipartite graph with this
degree sequence. This can be done in linear time in
the number of edges using queues as is discussed after
Observation 2.1. If k = l, the only differences are that
the graph is no longer bipartite and there are 2Jk,k
endpoints to be distributed among Dk nodes. To find
a simple nearly regular graph, one can use Bayati, Kim
and Saberi’s [3] algorithm in O(Jk,kk) time.

We must show that there is a way to combine all of
these nearly-regular graphs together without violating
any degree constraints. Let d = 〈d1, d2, · · · dn〉 be the
sorted nonincreasing order degree sequence from D.
Let d̂v denote the residual degree sequence where the
residual degree of a vertex v is dv minus the number of
edges that currently neighbor v. Also, let D̂k denote the



number of nodes of degree k that have non-zero residual
degree, i.e. D̂k =

∑
dj=k

1(d̂j 6= 0).

Algorithm 2.1. 1: for k = n · · · 1 and l = k · · · 1
do

2: if k 6= l then
3: Let a = Jk,l mod Dk and b = Jk,l mod Dl
4: Let x1 · · ·xa = bJk,l

Dk
c+1, xa+1 · · ·xDk

= bJk,l

Dk
c

and y1 · · · yb = bJk,l

Dl
c+ 1, yb+1 · · · yDl

= bJk,l

Dl
c

5: Construct a simple bipartite graph B with
degree sequence x1 · · ·xDk

, y1 · · · yDl

6: else
7: Let c = 2Jk,k mod Dk
8: Let x1 · · ·xc = b 2Jk,k

Dk
c + 1 and xc+1 · · ·xDk

=

b 2Jk,k

Dk
c

9: Construct a simple graph B with the degree
sequence x1 · · ·xDk

10: end if
11: Place B into G by matching the nodes of degree

k with higher residual degree with x1 · · ·xa and
those of degree l with higher residual degree with
y1 · · · yb. The other vertices in B can be matched
in any way with those in G of degree k and l

12: Update the residual degrees of each k and l degree
node.

13: end for

To combine the nearly uniform subgraphs, we start
with the largest degree nodes, and the corresponding
largest degree classes. First, we note that after every
iteration, the joint degree sequence is still feasible if
∀k, l, k 6= l Ĵk,l ≤ D̂kD̂l and ∀k Ĵk,k ≤

(D̂k

2

)
.

We will prove that Algorithm 2.1 can always satisfy
the feasibility conditions. First, we note a fact.

Observation 1. For all k,
∑
l Ĵk,l + Ĵk,k =

∑
dj=k

d̂j

This follows directly from the fact that the left hand
side is summing over all of the k endpoints needed by Ĵ
while the right hand side is summing up the available
residual endpoints from the degree distribution. Next,
we note that if all residual degrees for degree k nodes
are either 0 or 1, then:

Observation 2. If, for all j such that dj = k, d̂j = 0
or 1 then

∑
dj=k

d̂j =
∑
dj=k

1(d̂j 6= 0) = D̂k.

Lemma 2.1. After every iteration, for every pair of
vertices u, v of any degree k, |d̂u − d̂v| ≤ 1.

Amanatidis et al. refer to Lemma 2.1 as the
balanced degree invariant. This is most easily proven by
considering the vertices of degree k as a queue. If there

are x edges to be assigned, we can consider the process
of deciding how many edges to assign each vertex as
being one of popping vertices from the top of the queue
and reinserting them at the end x times. Each vertex
is assigned edges equal to the number of times it was
popped. The next time we assign edges with endpoints
of degree k, we start with the queue at the same position
as where we ended previously. It is clear that no vertex
can be popped twice without all other vertices being
popped at least once.

Lemma 2.2. The above algorithm can always greedily
produce a graph that satisfies J , provided J satisfies
the initial necessary conditions.

Proof. There is one key observation about this algo-
rithm - it maximizes D̂kD̂l by ensuring that the resid-
ual degrees of any two vertices of the same degree never
differ by more than 1. By maximizing the number of
available vertices, we can not get stuck adding a self-
loop or multiple edge. From this, we gather that if, for
some degree k, there exists a vertex j such that d̂j = 0,
then for all vertices of degree k, their residuals must be
either 0 or 1. This means that

∑
dj=k

d̂j = D̂k ≥ Ĵk,l
for every other l from Observation 2.

From the initial conditions, we have that for every
k, l Jk,l ≤ DkDl. Dk = D̂k provided that all degree
k vertices have non-zero residuals. Otherwise, for any
unprocessed pair, Jk,l ≤ min{D̂k, D̂l} ≤ D̂kD̂l. For the
k, k case, it is clear that Jk,k ≤ D̂k ≤

(D̂k

2

)
. Therefore,

the residual joint degree matrix and degree sequence
will always be feasible, and the algorithm can always
continue.

Theorem 2.3. The necessary conditions for a joint
degree matrix to be graphical imply that the associated
degree vector satisfies the Erdős-Gallai condition.

The proof is included in the Appendix.

3 Uniformly Sampling Graphs with Monte
Carlo Markov Chain (MCMC) Methods

We now turn our attention to uniformly sampling
graphs with a given graphical joint degree matrix us-
ing MCMC methods. We return to the joint degree
matrix configuration model. We can obtain a starting
configuration for any graphical joint degree matrix by
using Algorithm 2.1. The transitions we use select any
endpoint uniformly at random, then select any other
endpoint in its degree neighborhood and swap the two
edges that these neighbor. A more complex version of
this chain checks that this swap does not create a mul-
tiple edge or self-loop. Formally, the transition function
is a randomized algorithm given by Algorithm 3.1.



Algorithm 3.1. 1: With probability 0.5, stay at con-
figuration C. Else:

2: Select any endpoint e1 uniformly at random. It
neighbors a vertex v1 in configuration C

3: Select any e2 u.a.r from e1’s degree neighborhood.
It neighbors v2

4: (Optional: If the graph obtained from the con-
figuration with edges E ∪ {(e1, v2), (e2, v1)} \
{(e1, v1), (e2, v2)} contains a multi-edge or self-loop,
reject)

5: E ← E ∪ {(e1, v2), (e2, v1)} \ {(e1, v1), (e2, v2)}
There are two chains described by Algorithm 3.1.

The first, A doesn’t have step (4) and its state space is
all pseudographs with the desired joint degree matrix.
The second, B includes step (4) and only considers
simple graphs with the right joint degree matrix.

We remind the reader of the standard result that
any irreducible, aperiodic Markov Chain with symmet-
ric transitions converges to the uniform distribution over
its state space. Both A and B are aperiodic, due to
the self-loop to each state. From the description of the
transition function, we can see that A is symmetric.
This is less clear for the transition function of B. Is it
possible for two connected configurations to have a dif-
ferent number of feasible transitions in a given degree
neighborhood? We show that it is not the case in the
following lemma. The proof is included in the appendix.

Lemma 3.1. The transition function of B is symmetric.

The remaining important question is the connectiv-
ity of the state space over these chains. It is simple to
show that the state space of A is connected. We note
that it is a standard result that all perfect matchings
in a complete bipartite graph are connected via edge
swaps [33]. Moreover, the space of pseudographs can be
seen exactly as the set of all perfect matchings over the
disconnected complete bipartite degree neighborhoods
in the joint degree matrix configuration model. The
connectivity result is much less obvious for B. We adapt
a result of Taylor [33] that all graphs with a given degree
sequence are connected via edge swaps in order to prove
this. The proof is inductive and follows the structure of
Taylor’s proof. It is included in the Appendix.

Theorem 3.1. Given two simple graphs, G1 and G2 of
the same size with the same joint degree matrix, there
exists a series of endpoint rewirings to transform G1

into G2 (and vice versa) where every intermediate graph
is also simple.

4 Mixing Time of the Markov Chain

The Markov chain A is very similar to one analyzed
by Kannan, Tetali and Vempala [12]. We can exactly

use their canonical paths and analysis to show that
the mixing time is polynomial. This result follows
directly from Theorem 3 of [12] for chain A. This is
because the joint degree matrix configuration model
can be viewed as |D| complete, bipartite, and disjoint
components. These components should remain disjoint,
so the Markov Chain can be viewed as a ‘meta-chain’
which samples a component and then runs one step
of the Kannan, Tetali and Vempala chain on that
component. Even though the mixing time for this chain
is provably polynomial, this upper bound is too large to
be useful in practice.

The analysis to bound the mixing time for B chain is
significantly more complicated. We considered using the
canonical path method to bound the congestion of this
chain. The standard trick is to define a path from G1 to
G2 that fixes the misplaced edges identified by G1⊕G2

in a globally ordered way. However, this is difficult to
do for chain B because fixing a specific edge may not
be atomic, i.e. from the proof of Theorem 3.1 it may
take up to 4 swaps to correctly connect a vertex with
an endpoint if there are conflicts with the other degree
neighborhoods. These swaps take place in other degree
neighborhoods and are not local moves. In addition,
step (4) also prevents us from using path coupling as a
proof of the mixing time.

Given that bounding the mixing time of this chain
seems to be difficult, we use a series of experiments that
substitute the autocorrelation time for the mixing time.

4.1 Autocorrelation Time Autocorrelation time is
a quantity that is related to the mixing time and
is popular among physicists. We will give a brief
introduction to this concept, and refer the reader to
Sokal’s lecture notes for further details [31].

The autocorrelation of a signal is the cross-
correlation of the signal with itself given a lag t. More
formally, given a series of data 〈Xi〉 where each Xi is
a drawn from the same distribution X with mean µ
and variance σ, the autocorrelation function is RX(t) =
E[(Xi−µ)(Xi−t−µ)]

σ2 .

Definition 3. The exponential autocorrelation time is
τexp,X = lim supt→∞

t
− log |RX(t)| [31].

Definition 4. The integrated autocorrelation time is
τint,X = 1

2

∑∞
t=−∞RX(t) = 1

2 +
∑∞
t=1RX(t) [31].

Intuitively, an inherent problem with a Markov
Chain method is that successive states generated by the
chain may be highly correlated. If we were able to draw
independent samples from the stationary distribution,
then the autocorrelation of that set of samples with
itself would go 0 as the number of samples increased.



The autocorrelation time is capturing the size of the
gaps between sampled states of the chain needed before
the autocorrelation of this ‘thinned’ chain is very small.
If the thinned chain has 0 autocorrelation, then it must
be exactly sampled from the stationary distribution. In
practice, when estimating the autocorrelation from a
finite number of samples, we do not expect it to go
to exactly 0, but we do expect it to ‘die away’ as the
number of samples and gap increases.

The difference between the exponential autocorre-
lation time and the integrated autocorrelation time is
that the exponential autocorrelation time measures the
time it takes for the chain to reach equilibrium after a
cold start, or ‘burn-in’ time. The integrated autocor-
relation time is related to the increase in the variance
over the samples from the Markov Chain as opposed to
samples that are truly independent. Often, these mea-
surements are the same, although this is not necessarily
true.

We can substitute the autocorrelation time for the
mixing time because they are, in effect, measuring the
same thing - the number of iterations that the Markov
Chain needs to run for before the difference between
the current distribution and the stationary distribution
is small. We will use the integrated autocorrelation time
estimate.

4.2 Experimental Design We used the Markov
Chain B in two different ways. First, for each of the
datasets, we ran the chain for 50,000 iterations 15 times.
We used this to calculate the the autocorrelation values
for each edge for each lag between 100 and 15,000 in
multiples of 100. From this, we calculated the estimated
integrated autocorrelation time, as well as the iteration
time for the autocorrelation of each edge to drop under
a threshold of 0.001. This is discussed in Section 4.3.

We also replicated the experimental design of
Raftery and Lewis [28]. Given our estimates of the au-
tocorrelation time for each size graph in Section 4.3, we
ran the chain again for long enough to capture 10,000
samples where each sample had x iterations of the chain
between them. x was chosen to vary from much smaller
than the estimated autocorrelation time, to much larger.
From these samples, we calculated the sample mean for
each edge, and compared it with the actual mean from
the joint degree matrix. We looked at the total vari-
ational distance between the sample means and actual
means and showed that the difference appears to be con-
verging to 0. We chose the mean as an evaluation metric
because we were able to calculate the true means the-
oretically. We are unaware of another similarly simple
metric.

We used the formulas for empirical evaluation of

mixing time from page 14 of Sokal’s survey [31]. In
particular, we used the following:

• The sample mean is µ = 1
n

∑n
i=1 xi.

• The sample unnormalized autocorrelation function
is Ĉ(t) = 1

n−t
∑n−t
i=1 (xi − µ)(xi+t − µ).

• The natural estimator of RX(t) is ρ̂(t) = Ĉ(t)/Ĉ(0)

• The estimator for τint,X is τ̂int =
1
2

∑n−1
t=−(n−1) λ(t)ρ̂(t) where λ is a ‘suitable’

cutoff function.

Data Sets We have used several publicly available
datasets, Word Adjacencies [27], Les Miserables [15],
American College Football [8], the Karate Club [34],
and the Dolphin Social Network [20]. In the following
|V | is the number of nodes, |E| is the number of edges
and |J | is the number of non-zero entries in the joint
degree matrix.

|V | |E| |J |
AdjNoun 112 425 159
Dolphins 62 159 61
Football 115 616 18
Karate 34 78 40
LesMis 77 254 99

We selected these datasets because of their size. For
a sequence of length x, calculating the autocorrelation of
gap t requires (x − t)2 dot products. Our experiments
require that we calculate the autocorrelation for each
possible edge in a graph for many lags. Thus running
the full set of experiments requires O(|V |2x log x) time
and is prohibitive when V is large. In Section 4.6 we
discuss results that suggest a more feasible method for
estimating autocorrelation time for larger graphs.

4.3 Autocorrelation Values For each dataset and
each run we calculated the unnormalized autocorrela-
tion values for each edge for t between 100 and 15,000
in multiples of 100. We randomly selected 1 run for each
dataset and graphed the autocorrelation values for each
of the edges. We present the data for the Karate and
Dolphins datasets in Figures 4 and 5 while the graphs
for the other datasets are included in the Appendix due
to their similarity to the two presented.

All of the graphs exhibit the same behavior. We
see an exponential drop off initially, and then the
autocorrelation values oscillate around 0. This behavior
is due to the limited number of samples, and a bias due
to using the sample mean for each edge. If we ignore
the noisy tail, then we estimate that the autocorrelation
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Figure 5: The exponential dropoff for Dolphins appears
to end after 600 iterations.

‘dies off’ at the point where the mean absolute value of
the autocorrelation approximately converges, then we
can locate the ‘elbow’ in the graphs in Table 1.

4.4 Estimated Integrated Autocorrelation
Time For each dataset and run, we calculated the
estimated integrated autocorrelation time. Given that
we calculated the autocorrelation in lags of 100 from
100 to 15,000 for each dataset, we estimate ρ̂(t) as 100
times the sum of the values. The cut-off function we
used was λ(t) = 1 if 0 < t < 15, 000 and 0 otherwise.
This value was calculated for each edge.

For each dataset, we calculated the following: the
mean, median and maximum values for the estimated
integrated autocorrelation time for each edge. These are
graphed in Figure 6. The number of the edges represents
each of the datasets. In particular, in order from left
to right they are Karate, Dolphins, LesMis, AdjNoun
and Football. The error bars represent the maximum
and minimum values over all edges, while the line runs
through the median value over all edges.

All three metrics give roughly the same picture. We
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note that there is much higher variance in estimated au-
tocorrelation time for the larger graphs. If we consider
just the median values, then the autocorrelation time
appears to be linear. However, if we consider the error
bars for the maximum then we may need a superlinear
time to guarantee convergence of all edges.

4.5 The Sample Mean Approaches the Real
Mean for Each Edge Given the results of the pre-
vious experiment estimating the integrated autocorre-
lation time, we next executed an experiment suggested
by Raftery and Lewis [28]. First we note that for each
edge e, we know the true value of P (e ∈ G|G has J ) is
exactly Jk,l

DkDl
or Jk,k

(Dk
2 ) if e is an edge between degrees k

and l. This is because there are DkDl potential (k, l)
edges that show up in any graph with a fixed J , and
each graph has Jk,l of them. If we consider the graphs
as being labeled, then we can see that each edge has
an equal probability of showing up when we consider
permutations of the orderings.

Thus, our experiment was to take samples at vary-
ing intervals, and consider how the sample mean of each
edge compared with our known theoretical mean. For all
graphs, we took 10,000 samples at varying gaps depend-
ing on our estimated integrated autocorrelation time.
For the smaller graphs, we took 10 different samples of
10,000 edges. We elided this step in the larger graphs
because we saw very small variance. Additionally, we
saw that the total variational distance quickly converged
to a small, but non-zero value. For the smaller graphs,
Karate and Dolphins, we repeated the experiment with
20,000 samples and show that this error is due to the
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number of samples and not the sampler. We present
these results in Figure 9. If Se,g is the sample mean for
edge e and gap g, and µe is the true mean, then the
graphed value is

∑
e |Se,g − µe|/

∑
e µe.

In all of the figures, the line runs through the
median error for the 10 runs and the error bars are
the maximum and minimum values. We note that the
maximum and minimum are very close to the median as
they are within 0.05% for most intervals. These graphs
imply that we are sampling uniformly after a gap of 200
for the Karate graph. For the dolphin graph, we see
very similar results, and note that the error becomes
constant after a sampling gap of 400 iterations.

For the larger graphs, we took just one series of
samples for each of the following gaps: 100, 200, 400,
800, 1600, 3200, and 6400. Again, we see consistent
results, although the residual error is higher. This is
to be expected because there are more potential edges
in these graphs, so we took relatively fewer samples per
edge. For AdjNoun, we appear to be sampling uniformly
between a gap of 800 and 1600. For Football, the error
converges between 800 and 1600 again. LesMis also
appears to have converge between the 800 and 1600
gaps. These results are slightly better than the median
estimated integrated autocorrelation time for each of
the datasets.

4.6 Relationship Between Mean of an Edge and
Autocorrelation From the results in Section 4.3, we
considered if there was a relationship between the time
it took for the autocorrelation of an edge e to ‘die down’
and µe. For each edge and each run, we calculated the
first time where ρ̂e(t) passed under a threshold (0.001).
From these values, we looked at the mean time to pass

 0

 1

 2

 3

 4

 5

 6

 7

 0  1000  2000  3000  4000  5000  6000

T
ot

al
 V

ar
ia

tio
na

l D
is

ta
nc

e/
|E

|

Number of Iterations Between Samples

Percent Error of Total Variational Distance with 10,000 samples

LesMis
AdjNoun
Football
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AdjNoun, Football and LesMis

|E| Max EI Mean Conv. Thresh.
AdjNoun 425 1186 800-1600 700
Dolphins 159 528 400-600 600
Football 616 1546 800-1600 900
Karate 78 382 200-400 400
LesMis 254 894 800-1600 1000

Table 1: A summary of estimates on convergence from
the three experiments. The values are the Maximum
Estimated Integrated Autocorrelation time (Max EI),
the Sample Mean Convergence iteration number, and
the time to drop under the Autocorrelation Threshold.
The Autocorrelation threshold was calculated as when
the average absolute value of the autocorrelation was
less than 0.0001

under the threshold and created Figures 10, 11, and 12.
We have included the graphs for Football and Dolphins
in the Appendix because they have a smaller range of
ratios and illustrate the effect less well.

From these graphs, we suspect that there is a rela-
tionship between µe and the time to pass under a thresh-
old. Unfortunately, none of our datasets contained a
significant number of edges with larger µe values, i.e.
between 0.5 and 1. In order to test this hypothesis, we
designed a synthetic dataset that contained the many
edges with values of µe at i

20 for i = 1, · · · 20. We de-
scribe the creation of this dataset in the appendix.

The final dataset we created had 326 edges, 194
vertices and 21 distinct J entries. We ran the Markov
Chain 200 times for this synthetic graph. For each
run, we calculated the threshold value for each edge.
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Figure 13 shows the edges’ mean vs its mean time for
the autocorrelation value to pass under 0.001. We see
that there is a roughly symmetric curve that obtains its
maximum at µe = 0.5.

This result suggests a way to estimate the autocor-
relation time for larger graphs without repeating the
entire experiment for every edge that could possibly ap-
pear. One could calculate µe for each edge and sample
edges with 0.4 ≤ µe ≤ 0.6. One could then repeat our
experiments for just these selected edges in order to es-
timate the autocorrelation time.

5 Conclusions and Future Work

This paper makes two primary contributions. The first
is the investigation of Markov Chain methods for uni-
formly sampling graphs with a fixed joint degree dis-
tribution. Previous work shows that the mixing time
of A is polynomial, while our experiments suggest that
the mixing time of B is also polynomial. The relation-
ship between the mean of an edge and the autocorre-
lation values can be used to efficiently experiment with
larger graphs by sampling edges with mean between 0.4
and 0.6 and repeating the analysis for just those edges.
This would allow one to efficiently obtain estimates of
the running time for much larger graphs. Initial exper-
imental results for larger graphs following this design
show a similar polynomial running time.

Our second contribution is in the design of the ex-
periments to evaluate the mixing time of the Markov
Chain. In practice, it seems the stopping time for sam-
pling is often chosen without justification. Autocorrela-
tion is a simple metric to use, and can be strong evidence
that a chain is close to the stationary distribution when
used correctly.
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6 Appendix

Proof of Theorem 2.3: Let J be given and D be
the associated degree sequence. As with the Erdős-
Gallai condition, let d1 ≥ d2 ≥ · · · dn be the sorted
degree sequence. We assume only that Jk,l ≤ DkDl
for k 6= l and Jk,k ≤

(Dk

2

)
. For clarity later, double

each Jk,k entry so that kDk =
∑
l Jk,l instead of

kDk = Jk,k +
∑
l Jk,l.

We want to show that
∑k
i=1 di ≤ k(k − 1) +∑n

i=k+1 min{k, di} for every k. For clarity, we first
present the argument when dk > dk+1. Also, let dk = l.

k∑
i=1

di =
n∑
x=l

n∑
y=1

Jx,y =
n∑
x=l

n∑
y=l

Jx,y +
n∑
x=l

l−1∑
y=1

Jx,y

First, we note that
∑n
x=l

∑n
y=l Jx,y ≤∑n

x=l

∑n
y=lDxDy =

∑n
x=lDx

∑n
y=lDy ≤ k2. However,

we wanted to show it was less than k(k−1). This is true
because for k J values, it’s true that Jx,x ≤ Dx(Dx−1).
Intuitively, the sum is including a self-loop for every
node that can’t possibly exist.

Now, we consider
∑n
x=l

∑l−1
y=1 Jx,y. Here, let

us fix y and note that it contributes
∑n
x=l Jx,y.

This is at most yDy on one hand, and also at
most

∑n
x=lDyDx = Dy

∑n
x=lDx ≤ Dyk on the

other. Therefore,
∑n
x=l Jx,y ≤ min{yDy,Dyk} =

Dy min{y, k}. This is exactly the quantity we desired,
so
∑n
x=l

∑l−1
y=1 Jx,y ≤

∑n
i=k+1 min{k, di}.

We now address the case where dk = dk+1. If we
let l = dk again, then the above argument changes
because

∑k
i=1 dk =

∑n
x=l

∑n
y=1 Jx,y − (Dl − z)l where

dk−z, · · · dk = l. We note that the restricted graphical
conditions here are that when we consider the edges
with at least one endpoint in {d1, · · · dk}, we have that
Jx,l ≤ zDx (and z(z − 1) where appropriate). Plugging
this into the above argument results in exactly the right
values, as before.
Proof of Lemma 3.1: Let C1 and C2 be two neighboring
configurations in B. This means that they differ by
exactly 4 edges in exactly 1 degree neighborhood. Let
this degree be k and let these edges be e1v1 and e2v2 in
C1 whereas they are e1v2 and e2v1 in C2. We want to
show that C1 and C2 have exactly the same number of
feasible k-degree swaps.

Without loss of generality, let ex, ey be a swap that
is prevented by e1 in C1 but allowed in C2. This
must mean that ex neighbors v1 and ey neighbors some
vy 6= v1, v2. Notice that the swap e1ex is currently
feasible. However, in C2, it is now infeasible to swap
e1, ex, even though ex and ey are now possible.

If we consider the other cases, like ex, ey is pre-
vented by both e1 and e2, then after swapping e1 and
e2, ex, ey is still infeasible. If swapping e1 and e2 makes
something feasible in C1 infeasible in C2, then we can
use the above argument in reverse. This means that the
number of feasible swaps in a k-neighborhood is invari-
ant under k-degree swaps.
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Figure 14: The exponential dropoff for the AdjNoun
data appears to end after 700 iterations.
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Figure 15: The exponential dropoff for the Football data
appears to end after 900 iterations.
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Figure 16: The exponential dropoff for the LesMis data
appears to end after 1000 iterations.
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Figure 17: The time for an edge’s estimated autocor-
relation function to pass under the threshold of 0.001
versus µe for that edge.
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Figure 18: The time for an edge’s estimated autocor-
relation function to pass under the threshold of 0.001
versus µe for that edge.


